Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan.
نویسندگان
چکیده
The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.
منابع مشابه
Modeling morphological diversity in the oldest large multicellular organisms.
The terminal Neoproterozoic Ediacaran Period (635–541 Ma) is best described as a time of change. Following the end of the last global “Snowball” glaciation and a global rise in atmospheric oxygen levels, a biotic revolution began occurring in the oceans. The fossil record of this revolution showcases the transition from microscopic single cells into large, multicellular and morphologically comp...
متن کاملFrom the Cover: Osmotrophy in modular Ediacara organisms.
The Ediacara biota include macroscopic, morphologically complex soft-bodied organisms that appear globally in the late Ediacaran Period (575-542 Ma). The physiology, feeding strategies, and functional morphology of the modular Ediacara organisms (rangeomorphs and erniettomorphs) remain debated but are critical for understanding their ecology and phylogeny. Their modular construction triggered n...
متن کاملThe Ediacaran Period: a new addition to the geologic time scale
The International Union of Geological Sciences has approved a new addition to the geologic time scale: the Ediacaran Period. The Ediacaran is the first Proterozoic period to be recognized on the basis of chronostratigraphic criteria and the first internationally ratified, chronostratigraphically defined period of any age to be introduced in more than a century. In accordance with procedures est...
متن کاملEdiacaran biota from Sonora, Mexico.
The Ediacaran biota is the earliest diverse community of macroscopic animals and protoctists. Body and trace fossils in the Clemente Formation of northwestern Sonora extend downward the geologic range of Ediacaran forms. Taxa present in the Clemente Formation include cf. Cyclomedusa plana, Sekwia sp., an erniettid (bearing an air mattress-like "pneu" body construction), and the trace fossils Lo...
متن کاملRheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia
Diverse interpretations of Ediacaran organisms arise not only from their enigmatic body plans, but also from confusion surrounding the sedimentary environments they inhabited and the processes responsible for their preservation. Excavation of Ediacaran bedding surfaces of the Rawnsley Quartzite in South Australia has provided the opportunity to study the community structure of the Ediacara biot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 36 شماره
صفحات -
تاریخ انتشار 2014